

Synthèse périodique de l'inventaire

Plus de 30 ans de données écologiques disponibles 3
Les données collectées sur le terrain 4
Combiner les données pour produire des indices pertinents 5
Indice de topographie 6
Indice d'hydromorphie des sols 8
Indice de substrat géologique 10
Indice de texture 11
Réserve utile 12
Niveau hydrique et trophique 13
À retenir 16

Les équipes de l'inventaire forestier national sillonnent les forêts françaises depuis les années 60 et y collectent plus d'une cinquantaine de données renseignant leur écologie depuis les années 80. Ces données, interdépendantes et complémentaires, peuvent être utilisées pour des études de potentialité de station, d'autoécologie des espèces ou encore pour des études de ressource et de disponibilité forestière.

En effet, une station forestière est une zone homogène dans ses conditions physiques et biologiques, de superficie variable. Chaque station justifie une sylviculture précise, à productivité connue, pour une essence déterminée.

Ce numéro de L'IF détaille les différentes données écologiques mesurées ou observées sur le terrain, des exemples d'indices qui peuvent être calculés, ainsi que des applications possibles.

PLUS DE 30 ANS DE DONNÉES ÉCOLOGIQUES DISPONIBLES

Les relevés écologiques départementaux ont été initiés en 1981 dans le Sud-Est de la France (échelon IFN de Montpellier). L'échelon de Nancy a suivi sur le quart Nord-Est à partir de 1985, avec un protocole équivalent à celui actuellement en vigueur.
À partir de 1992, tous les départements inventoriés ont fait l'objet d'un relevé dans les «forêts de production hors peupleraie ${ }^{1}$ » (figure 1).
Depuis 2005, les relevés écologiques sont réalisés en continu, annuellement, dans tous les départements métropolitains.
Depuis 2016, les relevés ont été étendus aux peupleraies. Les informations seront intégrées aux publications et diffusées en 2021, lorsque cinq années de collecte d'inventaire seront disponibles.

Depuis sa généralisation à l'ensemble du territoire métropolitain en 1992, le protocole écologique de l'inventaire n'a pas subi de modifications. Les données levées à l'époque le sont encore aujourd'hui. Cela permet d'augmenter le nombre de points d'inventaire sur une zone d'étude pour en préciser la description, ou d'étudier des évolutions sur les 30 ans de collecte.

L'inventaire possède ainsi en base de données plus de 180000 points avec des relevés écologiques, répartis sur l'ensemble des forêts de production hors peupleraie. La base de données s'étoffe d'année en année, ajoutant annuellement près de 5500 nouveaux points écologie.

Depuis 2005, au lieu d'inventorier les forêts un département après l'autre, les équipes sont sectorisées et analysent chaque année les peuplements d'une même zone géographique. Ainsi, au fil des années, les chefs d'équipe ont acquis une meilleure connaissance des fonctionnements écologiques locaux et ont perfectionné leurs compétences botaniques jusqu'à être capable de reconnaître certaines espèces à tous leurs stades de développement.

Depuis 2017, de nouvelles données écologiques sont venues préciser celles déjà existantes, comme la description de l'épaisseur des différentes couches de I'humus, et l'identification de l'influence des éléments hydrographiques à proximité de la placette d'inventaire.

Fig. 1 - Nombre et année des relevés écologiques départementaux réalisés avant le passage à un inventaire national annuel (2005)

[^0]
LeS DONNÉES COLLECTÉES SUR LE TERRAIN

Les données écologiques mesurées sur la placette d'inventaire se divisent en quatre grandes catégories (figure 2).

1- La situation du point

Réalisée sur $2000 \mathrm{~m}^{2}$ (placette circulaire de 25 m de rayon), elle a pour but de rendre compte des contraintes physiques et d'ensoleillement de la placette. Les équipes mesurent la pente maximale, I'exposition et le masque². La position topographique générale est aussi renseignée, ainsi que la proximité et le dénivelé d'un élément hydrographique dans un rayon de 50 mètres.

2- Le relevé floristique

Toutes les espèces végétales présentes sur la placette de $700 \mathrm{~m}^{2}$ (placette circulaire de 15 m de rayon) sont déterminées. Leur abondance est renseignée en fonction de leur taux de recouvrement sur la placette avec une notation proche du coefficient d'abondance dominance de Braun-Blanquet. L'inventaire se réalisant tout au long de l'année, les relevés sont moins riches au cours de la période hivernale. Pour couvrir la totalité de la diversité floristique, chaque département est inventorié au fil des années à des périodes de végétations différentes. Une exception est faite pour les zones de montagne qui ne sont visitées qu'à la belle saison.

3- La description de l'humus

L'observation de I'humus ${ }^{3}$ se fait en plusieurs endroits de la placette de $700 \mathrm{~m}^{2}$, afin d'estimer son homogénéité. Sa description se fait tout d'abord en renseignant l'épaisseur de chaque couche (litière nouvelle, vieillie, brisée, fragmentée et humifiée), puis en croisant ces informations à l'aide d'une clé de détermination pour identifier le type d'humus.

4- La description du sol

Une fosse pédologique d'au moins 40 cm de profondeur est creusée à la pioche, puis un sondage à la tarière est réalisé jusqu'à 1 m , lorsque cela est possible. Sur ce profil pédologique, les différentes caractéristiques du sol sont notées: profondeur d'apparition de I'oxydation, du pseudogley, du gley ou de la carbonatation, charge en cailloux, nature des cailloux trouvés dans la fosse, et de la roche mère. La (ou les) texture(s) du sol est évaluée(s) au toucher et la profondeur de chacune est renseignée. Comme pour l'humus, le chef d'équipe utilise la combinaison de ces données pour qualifier le type de sol.

Fig. 2 - Rayon de la placette d'observation des quatre catégories de données écologiques

[^1]
COMBINER LES DONNÉES POUR PRODUIRE DES INDICES PERTINENTS

Les données prises sur le terrain sont consultables et téléchargeables gratuitement sur le site internet de l'inventaire forestier (encadré 1). Toutefois, prises individuellement, elles permettent difficilement de faire transparaître les différents types de fonctionnements forestiers. Certaines, comme les profondeurs d'apparition d'oxydation, de pseudogley et de gley sont indissociables, et d'autres, comme la texture et la proportion de cailloux, sont fortement complémentaires. Pour une analyse plus complète, des indices écologiques peuvent être calculés pour représenter des phénomènes particuliers: topographie, rayonnement, hydromorphie, substrat géologique, texture, charge en cailloux, profondeur de sol, réserve utile, acidité du sol, niveau hydrique et trophique, etc.

Au sein de l'inventaire forestier, ces indices sont actuellement utilisés à différents niveaux.
Sur le terrain, les niveaux hydrique et trophique ainsi que l'altitude compensée sont calculés à la fin du levé pour permettre de vérifier la cohérence du relevé floristique, I'articulation des données écologiques entre elles, et aider à l'identification des habitats forestiers.
Ultérieurement, tous ces indices sont mis à disposition lors de la vérification des données pour que la caractérisation du point soit facile et rapide.
lls sont aussi utilisés pour la documentation des résultats. Dans le cadre du suivi temporel des habitats par exemple, l'inventaire forestier est en mesure de décrire chaque type d'habitat inventorié avec les indices écologiques qui le caractérisent.

Dans les fiches qui suivent, vous trouverez le détail des principaux indices utilisés pour identifier le type de station forestière: l'hydromorphie des sols, leur texture, leur capacité de rétention en eau, la topographie de la placette et ses niveaux hydrique et trophique.
Pour compléter ces fiches, une notice détaillant le calcul de chacun de ces indices est disponible sur le site internet de l'inventaire forestier (voir encadré 1). Il est ainsi possible de recalculer chacun de ces indices à partir des données brutes. Les seuils choisis et des données prises en compte peuvent alors être adaptés pour perfectionner chaque indice et les adapter aux besoins spécifiques d'un thème d'étude ou d'une région.

ENCADRÉ 1 :

MISE À DISPOSITION DES DONNÉES BRUTES ET DES INDICES ÉCOLOGIQUES

Les données brutes de l'inventaire forestier, recueillies sur le terrain, sont mises à disposition sur le site de l'inventaire forestier, dans sa rubrique «Les services en ligne »:
inventaire-forestier.ign.fr??rubrique159
Deux possibilités s'offrent à vous :

- Télécharger les fichiers de données. Toutes les campagnes d'inventaire depuis 2005 sont en ligne. - Interroger les cinq dernières campagnes d'inventaire pour visualiser rapidement et directement en ligne le résultat sur une carte. II est également possible d'exporter le tableau de résultats dans un fichier (figure a).

Fig. a - Outil d'interrogation, visualisation et exportation des données brutes

À partir des données brutes, il est possible de calculer de nouvelles données, de créer des indices écologiques.

Afin de vous permettre d'utiliser les sept indices écologiques présentés dans ce numéro de L'IF, ils ont été rassemblés dans un ensemble de fichiers téléchargeables sur la page dédiée à l'écologie forestière :
inventaire-forestier.ign.fr/?rubrique262
Par ailleurs, les données brutes utilisées dans le calcul de ces indices et la documentation associée y ont été compilées. Cela vous permettra si besoin de les adapter, en modifiant par exemple les seuils ou les données intégrées, et de répondre aux besoins spécifiques d'un thème d'étude ou d'une région.

INDICE DE TOPOGRAPHIE

Cet indice regroupe plusieurs données de situation topographique relevées sur le point d'inventaire : la plus forte pente, l'exposition, la présence de masque et la position générale du point par rapport à un relief (sommet, haut de pente, fond de vallon, etc.). En combinant ces informations, on obtient une distinction en six grands ensembles, correspondant aux différentes situations écologiques envisageables (figure 3).

Cet indice prend à la fois en compte la circulation ou la rétention de l'eau et l'évapotranspiration de l'écosystème.
Il est toutefois soumis aux confusions possibles entre un « terrain plat» et des situations de vallées très larges. Ces modalités peuvent être recodées en croisant les points d'inventaire avec la BD ${ }^{\circledR}$ Carthage.

Cet indice pourrait encore être précisé en rajoutant une distinction des hauts de pente et des sommets, quii correspondent à des situations plus sèches.

À partir de cet indice, les caractéristiques des peuplements correspondant à chaque situation topographique sont distinguées. Par exemple, les essences les plus présentes en volume dans les fonds de vallées sont le chêne pédonculé, les frênes et les aulnes. Sur les ubacs (versants qui bénéficient de la plus courte exposition au soleil) se trouvent le hêtre, le sapin pectiné et l'épicéa commun, et sur les adrets (versant qui bénéficient de la plus longue exposition au soleil) les chênes pubescents et les chênes verts.

Fig. 3 - Caractérisation de l'indice de topographie sur un massif montagneux

1

Terrain plat

Situation de plaine, avec approvisionnement en eau régulier, pas de contraintes particulières pour les peuplements.

Adret
Situation pentue avec une exposition sud : ces situations combinent les pertes en eau par le ruissellement et une évapotranspiration plus élevée.

Versant mesotherme

Situation de pente où les arrivées d'eau et les départs sont équivalents. Seule la pente peut être contraignante, l'ensoleillement est favorable mais non contraignant.

4 Ubac
Situation pentue mais ombragée. Le bilan hydrique y est favorable mais I'ensoleillement peut être limitant. La pente peut aussi être contraignante.

5
Bas de versant
Zone collectrice d'eau souvent avec des sols favorables.

Vallon, vallée

Zone collectrice d'eau par les versants et les cours d'eau. Très bon bilan hydrique et généralement protégée des vents.

La production biologique des peuplements, tous peuplements confondus, est nettement plus faible en adret (figure 4), probablement à cause de la plus forte évapotranspiration et des situations de départ d'eau. La production biologique des peuplements en ubac et en versant mésotherme est intermédiaire, aux alentours de $5 \mathrm{~m}^{3} / \mathrm{ha}$ /an, avec des contraintes liées à la pente, mais une évapotranspiration modérée. La plus forte productivité est pour les peuplements de bas de versant, de vallon, de vallée ou sur du plat. Ces peuplements ne sont pas soumis à des contraintes physiques et les approvisionnements en eau sont favorables.

Fig. 4 - Production biologique annuelle à l'hectare en fonction de la position topographique, en forêt de production hors peupleraie, en France, période 2008-2016.

$\circ \circ \circ$
$\circ \circ \circ$

- ○ ○
- ○
- ○。
$\circ \circ \circ \circ$
- ○ ○ ○

INDICE D'HYDROMORPHIE DES SOLS

L'indice d'hydromorphie permet d'identifier le niveau d'engorgement en eau des sols forestiers. Il est évalué à partir des données de description du sol. Il se base sur la profondeur d'apparition de gley, de pseudogley ou d'oxydation, discrétisée en classes de 10 cm . Cette information est complétée par le type de sol et le type d'humus, qui permettent d'avoir une vision plus globale de la placette d'inventaire. Cet ajout permet d'englober certains cas particuliers où les taches d'hydromorphie sont peu visibles (tourbe, podzol humique, etc.) mais la contrainte bien réelle. L'hydromorphie des sols est classée selon cinq modalités.

À partir de cette donnée, on peut observer que les situations d'hydromorphie présente à moins de 65 cm de profondeur représentent 16% de superficie forestière et 17% du volume de bois sur pied de la forêt de production hors peupleraie. Ces peuplements se retrouvent dans toutes les zones de plaine (figure 5), et particulièrement dans certaines régions: la Sologne (1), la Champagne humide (2), la plaine de la Saône, la Bresse et les Dombes (3) et les plaines et dépressions argileuses du Nord-Est (4).

Fig. 5 - Répartition de l'indice d'hydromorphie (points d'inventaire 2005 à 2017)

Cette donnée permet ainsi de distinguer différents types de peuplements selon leurs caractéristiques hydriques. Les essences présentes en situation d'hydromorphie forte dès la surface sont des essences qui tolèrent bien l'engorgement, telles que le chêne pédonculé, les bouleaux pubescent et verruqueux, le frêne commun, I'aulne glutineux et les saules (figure 6). Les peupliers (hors peupleraies) qui sont fréquents en bord de cours d'eau apparaissent également.

Les résineux sont aussi bien représentés. Ces essences correspondent aux reboisements des zones humides des siècles derniers : épicéa en Ardenne primaire, pin maritime dans les Landes de Gascogne, pin laricio en Sologne par exemple. Ces espèces tolèrent I'hydromorphie mais sont sensibles aux fluctuations d'hydromorphie et aux périodes de sécheresse.

Fig. 6 - Volume des principales essences dans les forêts (de production hors peupleraie) avec une hydromorphie forte dès la surface (période 2013-2017)

De la même manière à partir des relevés floristiques, la fréquence des espèces herbacées peut être ventilée selon les modalités de l'indice d'hydromorphie. Avec l'hydromorphie de surface, les cortèges hygrophiles et mésohygrophiles (qui ont une préférence
pour les milieux humides) sont mis en évidence : Carex paniculata, Carex riparia, Lysimachia vulgaris, Iris pseudacorus, Carex acutiformis, Lycopus europaeus, Galium palustre, Sphagnum, Phragmites autralis, Phalaris arundinacea, Caltha palustris, etc.

Carex paniculata

Caltha palustris


```
\circ
\circ
0}
```

$\circ 000$
$\circ \circ \circ 0$

INDICE DE SUBSTRAT GÉOLOGIQUE

L'indice de substrat géologique combine la nature des cailloux éventuellement trouvés dans la fosse pédologique et la roche mère. Les modalités sont regroupées en 12 classes synthétiques ${ }^{4}$ (figure 7).

Cette donnée permet de mettre en évidence les grands ensembles géologiques français. On retrouve les roches métamorphiques dans le Massif central, les Pyrénées, les Alpes et la Bretagne, les formations calcaires en Méditerranée, dans le Jura et les plateaux calcaires du Nord-Est, et les formations siliceuses dans le Centre Nord semiocéanique, dans la vallée de la Saône et dans une grande partie du Sud-Ouest océanique ${ }^{5}$.

La donnée de substrat géologique a aussi été utilisée à une échelle plus fine, pour la mise en place des 86 sylvoécorégions ${ }^{6}$. Cet indice permet en effet de distinguer des zones caractéristiques du point de vue géologique. On peut citer par exemple : les Maures et l'Esterel (métamorphiques), les Ardennes (métamorphiques), le Massif central (volcanique), les Causses du Sud-Ouest (calcaire) et le Morvan (plutonique).
${ }^{4}$ inventaire-forestier.ign.fr/?rubrique262
${ }^{5}$ Appellations des grandes régions écologiques (GRECO), aux contours représentés sur les cartes de ce numéro.
${ }^{6}$ inventaire-forestier.ign.fr/?rubrique253

Fig. 7 - Répartition de l'indice de substrat géologique (points d'inventaire 2005 à 2017)

INDICE DE TEXTURE

Cet indice combine les données descriptives du sol (affleurements rocheux, charge en cailloux, texture) pour définir ses caractéristiques globales. Il distingue tout d'abord les sols superficiels et très caillouteux, contraignants pour les peuplements forestiers. Les autres sols sont ensuite détaillés selon leur texture (limon, argile, sable). Les sols lessivés et les sols limoneux sont classés selon l'épaisseur de leur couche de limon. Cette épaisseur impacte fortement la productivité des stations et est souvent un critère déterminant dans les catalogues de stations forestières.

Ces catégories (figure 8) permettent de distinguer les différentes propriétés du sol et leurs capacités nutritives ou de rétention en eau. On distingue ainsi les sols superficiels en zone de montagne et méditerranéenne, les sols sableux dans les Landes et en Sologne et les textures argileuses sur les plateaux calcaires du Nord-Est.

Comme pour la topographie, les conditions de production toutes essences confondues peuvent être ventilées selon cet indice (figure 9). On individualise ainsi très nettement les sols superficiels qui ont une production nettement inférieure à $5 \mathrm{~m}^{3} / \mathrm{ha} / \mathrm{an}$. Cette donnée peut donc être utilisée par exemple pour écarter ces points sur sols superficiels d'une analyse pour se concentrer sur les points avec un sol plus développé ou inversement.
Les peuplements sur sols argileux montrent aussi une production plus faible. En effet, les sols argileux sont généralement compacts et peu aérés. De plus, l'alternance sur l'année d'une période très humide et d'une période sèche est très contraignante pour les arbres.

Fig. 9 - Production biologique annuelle à l'hectare selon l'indice de texture des peuplements, en forêt de production hors peupleraie, en France, période 2008-2016

Fig. 8 - Répartition de l'indice de texture (points d'inventaire 2005 à 2017)

RÉSERVE UTILE

La réserve utile renseigne sur la capacité de rétention en eau du sol et donc sur la quantité d'eau disponible pour les végétaux. Pour I'évaluer, les données de profondeur du sol, de texture et de charge en cailloux sont utilisées ${ }^{7}$ (figure 10). La proportion en affleurements rocheux sur la placette est intégrée dans le calcul.

L'évaluation de la réserve utile est fortement dépendante de la profondeur de sondage du sol et des éléments qui peuvent I'entraver. Une trop forte pierrosité pourra empêcher un sondage profond à la tarière mais pas le passage des racines des végétaux. La réserve utile en est ainsi sous-évaluée. Cet indice n'a donc pas la prétention d'évaluer avec justesse la quantité d'eau disponible pour les végétaux, mais propose un ordre de grandeur qui permet de comparer les points d'inventaire entre eux.
Sur la carte de répartition (figure 11), on observe une réserve utile globalement plus faible en Méditerranée, dans les Alpes et dans le sud du Massif central, due principalement à des sols peu profonds et une forte charge en cailloux. Dans les Landes de Gascogne, la faible réserve utile s'explique par la texture sableuse dans ce massif, qui retient peu l'eau dans le sol.

La réserve utile impacte les conditions de production des forêts (figure 12). Les peuplements avec une faible réserve utile ont une production entre 2 et $3 \mathrm{~m}^{3} / \mathrm{ha} / \mathrm{an}$, tandis qu'à partir de 70 mm de réserve utile, les peuplements forestiers ont une production biologique de plus de $6 \mathrm{~m}^{3} / \mathrm{ha} / \mathrm{an}$.
${ }^{7}$ inventaire-forestier.ign.fr/?rubrique262

Fig. 11 - Répartition de la réserve utile (points d'inventaire 2005 à 2017)

Fig. 10 - Évaluation de la réserve utile du sol

Fig. 12 - Production biologique annuelle à I'hectare selon la réserve utile des peuplements, en forêt de production hors peupleraie, en France, période 2008-2016

NIVEAUX HYDRIQUE ET TROPHIQUE

Le niveau hydrique renseigne sur les conditions climatiques et les caractéristiques pédologiques de l'écosystème, tandis que le niveau trophique révèle la richesse minérale du sol.
Ces données sont bioindiquées à partir de la flore relevée sur le terrain.
En effet, les espèces végétales sont représentatives des conditions qui règnent sur la placette. On retrouvera des cortèges floristiques différents selon que la placette est sèche ou humide, riche ou acide. Le caractère indicateur utilisé pour les espèces végétales est celui donné par la Flore Forestière Française (figure 13 ; basé sur la base de données phytoécologiques EcoPlant). En attribuant à chaque espèce une valeur indicatrice des conditions dans lesquelles elle se trouve habituellement, et en les pondérant par l'abondance de chacune, on peut reconstituer à partir du relevé floristique réalisé sur la placette les niveaux hydrique et trophique du peuplement.

Le calcul et la représentativité de ces indices sont conditionnés par plusieurs facteurs:

- le nombre d'espèces dans le relevé: un relevé avec peu d'espèces ne sera pas forcément représentatif des conditions du peuplement. Le barycentre des valeurs indicatrices des espèces relevées sera fragile et pourra bouger fortement avec l'ajout ou le retrait d'une espèce. À l'inverse, un relevé riche décrira mieux
le milieu et aura une meilleure inertie vis-à-vis d'éventuelles espèces discordantes. Les relevés floristiques de l'inventaire forestier permettent une bonne qualité de bioindication.
- la variabilité du milieu : les relevés de l'inventaire portent sur l'ensemble de la placette et sont réalisés indépendamment des éventuelles variations de milieux. Un relevé floristique peut donc être à cheval sur deux milieux, par exemple, une hêtraie dans la pente (cortège floristique mésophile) et une aulnaie frênaie dans le bas de vallon (cortège floristique mésohygrophile). Le niveau hydrique calculé sera intermédiaire, ne représentant ni les conditions de la hêtraie ni les conditions de l'aulnaie. Toutefois, ce type de relevé est minoritaire et les placettes correspondant à ces situations peuvent être écartées des analyses si nécessaire.
- les perturbations éventuelles de la flore : une coupe fait ressortir des espèces hygroclines, tandis qu'un travail du sol ou un passage de sanglier fait disparaitre toute végétation, empêchant ainsi un calcul fiable de ces indices. De même, ces placettes peuvent être isolées pour l'analyse.

Les niveaux hydrique et trophique permettent aussi de renseigner sur les conditions de production des peuplements forestiers.

Fig. 13 - Exemple d'amplitude hydrique et trophique de chaque espèce relevée sur une placette d'inventaire

En observant la production biologique (figure 14) des peuplements forestiers selon le niveau hydrique du peuplement (figure 15), on constate que celle-ci suit une répartition en «cloche». La production est plus faible dans les situations écologiquement contraignantes : engorgement trop fort ou au contraire, sur les stations sèches et filtrantes, avec une faible disponibilité en eau. Les plus fortes productivités sont sur les stations hygroclines à mésophiles frais.

Fig. 14 - Production biologique annuelle à l'hectare selon le niveau hydrique des peuplements, en forêt de production hors peupleraie, en France, période 2008-2016

En termes de niveau trophique, la productivité est globalement équivalente pour toutes les classes, sauf sur les stations neutrocalcicoles et calcicoles où l'on observe un décrochement net (figure 16). Celui-ci peut s'expliquer par deux facteurs: la forte quantité de calcium dans le sol peut limiter l'absorption des éléments nutritifs et par ailleurs, dans les situations sur roche mère calcaire, la disponibilité en eau est souvent faible. En effet, plus de la moitié des peuplements neutrocalcicoles à calcaricoles sont aussi en situation sèche. La faible disponibilité en eau s'ajoute donc aux contraintes du calcaire (figure 17).

Fig. 16 - Production biologique annuelle à l'hectare selon le niveau trophique des peuplements, en forêt de production hors peupleraie, en France, période 2008-2016

Fig. 17 - Répartition du niveau trophique (points d'inventaire 2005 à 2017)

[^2]

Hygrophile Mésohygrophile Hygrocline Mésohygrocline Mésophile frais Mésophile sec Xérocline Mésoxérophile Xérophile

Les niveaux hydrique et trophique peuvent se combiner pour individualiser et analyser certains types de peuplements. Par exemple, I'étude des peuplements xérocalcicoles ${ }^{8}$ (1,2 million d'hectares) montre qu'ils se situent principalement en zone méditerranéenne et dans les Alpes externes du Sud, mais aussi dans le sud des Plateaux calcaires du Nord-Est et dans les Causses du Sud-Ouest (figure 18).
En termes de faciès, on retrouve les essences caractéristiques des stations sèches et calcaires (figure 19) : 20% sont des peuplements purs de chêne pubescent et 12% sont des peuplements purs de chêne vert. Les peuplements purs de pin sylvestre et de pin d'Alep et les mélanges de chêne et de pin sylvestre arrivent ensuite en proportions plus faibles.
${ }^{8}$ Un peuplement xérocalcicole est caractérisé par un sol sec (niveau hydrique mésoxérophile, xérophile ou hyperxérophile) et calcaire (niveau trophique calcicole ou calcaricole).

Fig. 18 : Répartition des points xérocalcicoles ${ }^{7}$
(points d'inventaire 2005 à 2017)

Fig. 19 - Principales compositions (en surface) des peuplements xérocalcicoles ${ }^{7}$

À RETENIR

Les indices écologiques fournis par l'inventaire combinent les données brutes levées sur le terrain et renseignent sur des facteurs importants pour la production ou la connaissance de l'écologie des forêts :

- le substrat écologique (12 modalités),
- la texture des sols (9 modalités),
- I'hydromorphie des sols (5 modalités),
- la réserve utile en eau du sol (variable continue),
- la topographie (6 modalités),
- les niveaux hydrique (9 modalités) et trophique (11 modalités) indiqués par les plantes.

Ils permettent une première manipulation simplifiée des données écologiques de l'inventaire. En effet, ils offrent une vision synthétique des conditions du milieu, en prenant en compte l'articulation entre elles des différentes données brutes.
Ainsi, ils facilitent le rattachement rapide des données de l'inventaire aux catalogues de stations forestières ou aux guides de choix des essences forestières.

Enfin, ces indices sont aussi un point de départ pour d'autres analyses plus personnalisées. À partir des indices fournis, il est par exemple possible de recalculer ses propres indices à partir des données brutes, en affinant les seuils ou en complétant les données prises en compte, pour répondre au mieux aux besoins de chacun.

POUR EN SAVOIR PLUS

Notice technique sur le calcul des indices écologiques et données brutes associées de l'inventaire forestier
<inventaire-forestier.ign.fr/?rubrique262>
Retour sur le colloque « 60 ans d'inventaire forestier pour éclairer l'avenir » / Atelier thématique « vers de nouvelles utilisations des données écologiques de |'inventaire »
<www.ign.fr/institut/actus/retour-colloque-60-ans-dinventaire-forestier-eclairerlavenir>

Maaf, IGN, 2016. Indicateurs de gestion durable des forêts françaises métropolitaines, édition 2015, Résultats. Critère 1, indicateur 1.1.1, Encadré 1, page 41. Maaf-IGN, Paris, 343 p.
<inventaire-forestier.ign.fr/?article929\#IGD>
Les 40 ans de l'Inventaire Forestier National : utilisation et valorisation des données collectées. Revue forestière française, 3-4, 2001 - Thème 3
http://documents.irevues.inist.fr/handle/2042/4777

SUR LE SITE DE L'INVENTAIRE FORESTIER

Les données brutes de l'inventaire forestier <inventaire-forestier.ign.fr/?rubrique159>

L'écologie forestière - La connaissance des écosystèmes forestiers et arborés <inventaire-forestier.ign.fr/?rubrique262>

La typologie des stations forestières (plus de 480 documents numérisés) <inventaire-forestier.ign.fr/?rubrique20>

IGN, 2018. Les habitats forestiers : le dispositif national de suivi et de surveillance. L'IF, nº43, 12 p.
<inventaire-forestier.ign.fr/?rubrique33>
IGN, 2014. Les données de l'inventaire forestier : état des lieux et évolution. L'IF, nº34, 17 p . <inventaire-forestier.ign.fr/?rubrique33>
IGN, 2018. Méthodologie - Pour bien comprendre les résultats publiés, 2013-2017. <inventaire-forestier.ign.fr/?rubrique233>

ulf

La synthèse périodique de l'inventaire forestier

inventaire-forestierign.fr y

[^0]: ${ }^{1}$ Forêts de production : forêts disponibles pour la production de bois. Cela signifie que le terrain doit permettre une production de bois sans qu'une autre utilisation, ou les conditions physiques, ne viennent en empêcher l'exploitation (réserve intégrale, zone inaccessible, etc.). Cette utilisation du sol est observée par photo-interprétation et confirmée ensuite lors du passage des agents sur le terrain.
 Peupleraie : peuplement où les peupliers cultivés représentent au minimum 75% du couvert libre relatif.

[^1]: ${ }^{2}$ Hauteur angulaire en pourcent du faîte du versant opposé à la pente de la placette de $2000 \mathrm{~m}^{2}$.
 ${ }^{3}$ Couches de feuilles et/ou d'aiguilles se décomposant progressivement

[^2]: Hyperacidiphile
 Acidiphile
 Faiblement acidiphile (niveau intermédiaire)
 Mésoacidiphile
 Acidicline
 Neutroacidicline
 Mésoneutrophile
 Neutrophile
 Neutrocalcicole
 Calcicole
 Calcaricole

